Short-term Power Prediction of the Photovoltaic System Based on QPSO-SVM
نویسندگان
چکیده
Short-term power prediction of the photovoltaic system is one of the effective means to reduce the adverse effects of photovoltaic power on the grid. Since the efficiency of the traditional support vector machine (SVM) prediction method is low, this paper proposes the SVM based on the parameter optimization method of quantum particle swarm optimization (QPSO), and then apply into the power shortterm prediction of the photovoltaic system. After comparing and analyzing the prediction results of SVM based on three optimization methods, we find that the QPSO-SVM method has better precision and stability, which provides reference to forecast generation power of the photovoltaic system.
منابع مشابه
Fuzzy-Decision-Making Predictive Power Control Approach to On-Grid Photovoltaic Panel
In this paper, a voltage-current mode controller is proposed to adjust both the input current and DC voltage of a boost-inverter in order to improve the performance of the photovoltaic (PV). The proposed system is based on fuzzy-making-decision predictive voltage-current controller (FPVCC). The simulation results show that in case of using the proposed FPVCC, the input current of a PV array is ...
متن کاملScenario based technique applied to photovoltaic sources uncertainty
There is an increasing need to forecast power generated by photovoltaic sources in day-ahead power system operation. The electrical energy generated by these renewable sources is an uncertain variable and depends on solar irradiance, which is out of control and depends on climate conditions. The stochastic programming based on various scenarios is an efficient way to deal with such uncertaintie...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملAn Integrated Support Vector Machineand Quantum Behaved Particle Swarm Optimization Algorithm for Groundwater Level Forecasting
Groundwater level prediction in a water basin plays a significant role in the management of groundwater resources. Aground water level forecasting system is developed in this study using Support vector Machines (SVM). Further Quantum behaved Particle Swarm Optimization (QPSO) function is employed in this study to determine the SVM parameters. Later, the proposed SVM-QPSO model is used in determ...
متن کامل